Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Bromo-1-phenylethanone

Richard Betz,* Cedric McCleland and Harold Marchand

Nelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa Correspondence e-mail: richard.betz@webmail.co.za

•

Received 5 April 2011; accepted 19 April 2011

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.004 Å; R factor = 0.029; wR factor = 0.072; data-to-parameter ratio = 20.5.

The title compound, C_8H_7BrO , is a halogenated derivative of acetophenone. The molecule shows noncrystallographic C_s symmetry. The intracyclic C-C-C angles cover the range 118.8 (2)–120.4 (3)°. In the crystal structure, C-H···O contacts connect the molecules into undulating sheets perpendicular to the crystallographic *c* axis.

Related literature

For the crystal structure of α -chloro-acetophenone, see: Barrans & Maisseu (1966); Grossert *et al.* (1984). For the crystal structure of α -iodo-acetophenone, see: Lere-Porte *et al.* (1982). For the crystal structures of coordination compounds using the title compound as a ligand, see: Laube *et al.* (1991). For details of graph-set analysis of hydrogen bonds, see: Etter *et al.* (1990); Bernstein *et al.* (1995).

Experimental

Crystal data

 $\begin{array}{l} C_8 H_7 BrO \\ M_r = 199.05 \\ Orthorhombic, \ P2_1 2_1 2_1 \\ a = 4.1459 \ (2) \ \text{\AA} \\ b = 9.6731 \ (5) \ \text{\AA} \\ c = 18.8178 \ (9) \ \text{\AA} \end{array}$

 $V = 754.66 (6) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 5.37 \text{ mm}^{-1}$ T = 200 K $0.54 \times 0.43 \times 0.09 \text{ mm}$ Data collection

Bruker APEXII CCD

diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2010) $T_{\min} = 0.588, T_{\max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.072$ S = 1.081867 reflections 91 parameters H-atom parameters constrained 7436 measured reflections 1867 independent reflections 1692 reflections with $I > 2\sigma(I)$ $R_{int} = 0.037$

 $\begin{array}{l} \Delta \rho_{max} = 0.42 \ e \ \mathring{A}^{-3} \\ \Delta \rho_{min} = -0.66 \ e \ \mathring{A}^{-3} \\ Absolute \ structure: \ Flack \ (1983), \\ with \ 736 \ Friedel \ pairs \\ Flack \ parameter: \ 0.015 \ (14) \end{array}$

Table 1 Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C2-H21\cdotsO1^{i}$ $C2-H22\cdotsO1^{ii}$ $C8-H8\cdotsO1^{i}$	0.99	2.46	3.317 (4)	145
	0.99	2.44	3.268 (4)	141
	0.95	2.60	3.442 (3)	148

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x + 2, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2010); cell refinement: *SAINT* (Bruker, 2010); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

The authors thank Mr Benjamin Wilson for helpful discussions.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FY2008).

References

Barrans, Y. & Maisseu, J. (1966). C. R. Acad. Sci. Ser. C, 262, 91-92.

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, USA.

Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Grossert, J. S., Dubey, P. K., Gill, G. H., Cameron, T. S. & Gardner, P. A. (1984). *Can. J. Chem.* **62**, 798–807.
- Laube, T., Weidenhaupt, A. & Hunziker, R. (1991). J. Am. Chem. Soc. 113, 2561–2567.
- Lere-Porte, J.-P., Bonniol, A., Petrissans, J. & Brianso, M.-C. (1982). Acta Cryst. B38, 1035–1037.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2011). E67, o1207 [doi:10.1107/S1600536811014644]

2-Bromo-1-phenylethanone

R. Betz, C. McCleland and H. Marchand

Comment

Derivatives of acetophenone are widely used in preparative organic chemistry. At the beginning of a comprehensive study about the effects of various substituents on benzo-annulated seven-membered ring systems, the molecular structure of the title compound was determined to enable comparisons with acetophenone-derived target compounds.

Intracyclic C—C—C angles span a range from $118-120^{\circ}$. The smallest angle is found on the C atom bearing the carbonylic substituent while the second smallest one is found on the C atom in *para*-position. The atoms of the aliphatic substituent are nearly coplanar with the aromatic system and its conjugated carbonyl group, the least-squares planes defined by their respective atoms intersect at an angle of only 4.18 (15)°.

In the crystal structure, C—H···O contacts can be observed which stem from both H atoms of the methylene group as well as one of the H atoms in *ortho*-position to the substituent on the phenyl ring. The carbonylic O atom serves as threefold acceptor (Fig. 2). Describing these contacts in terms of graph-set analysis necessitates a C(4)C(4)C(5) descriptor on the unitary level. In total, the molecules are connected to waved sheets perpendicular to the crystallographic *c* axis. The shortest distance between the centroids of two π -systems was measured at 5.8289 (17) Å.

The packing of the compound in the crystal is shown in Fig. 3.

Experimental

The compound was obtained commercially (Schuchardt). Crystals suitable for the X-ray diffraction study were taken directly from the provided batch.

Refinement

Carbon-bound H atoms were placed in calculated positions (C—H 0.99 Å for the methylene group and C—H 0.95 Å for aromatic C atoms) and were included in the refinement in the riding model approximation, with U(H) set to $1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).

Fig.	2. Intermolecular contacts,	viewed along [00\=1].	Symmetry operators:	ⁱ - <i>x</i> + 1, <i>y</i> + $1/2$,
- <i>z</i> +	1/2; ⁱⁱ - <i>x</i> + 2, <i>y</i> + 1/2, - <i>z</i> + 1	1/2; ⁱⁱⁱ -x + 1, y - 1/2, -z	x + 1/2; ^{iv} -x + 2, y - 1/2	2, $-z + 1/2$.

Fig. 3. Molecular packing of the title compound, viewed along [\=100] (anisotropic displacement ellipsoids drawn at 50% probability level).

2-Bromo-1-phenylethanone

Crystal data

C₈H₇BrO $M_r = 199.05$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 4.1459 (2) Å b = 9.6731 (5) Å c = 18.8178 (9) Å V = 754.66 (6) Å³ Z = 4 F(000) = 392 $D_x = 1.752 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 5571 reflections $\theta = 2.4-28.2^{\circ}$ $\mu = 5.37 \text{ mm}^{-1}$ T = 200 KPlatelet, colourless $0.54 \times 0.43 \times 0.09 \text{ mm}$

Data collection

Bruker APEXII CCD diffractometer	1867 independent reflections
Radiation source: fine-focus sealed tube	1692 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.037$
ϕ and ω scans	$\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 3.9^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2010)	$h = -4 \rightarrow 5$
$T_{\min} = 0.588, T_{\max} = 1.000$	$k = -12 \rightarrow 12$
7436 measured reflections	$l = -25 \rightarrow 24$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.029$	H-atom parameters constrained
$wR(F^2) = 0.072$	$w = 1/[\sigma^2(F_o^2) + (0.0377P)^2 + 0.0956P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.08	$(\Delta/\sigma)_{\rm max} < 0.001$
1867 reflections	$\Delta \rho_{max} = 0.42 \text{ e} \text{ Å}^{-3}$
91 parameters	$\Delta \rho_{min} = -0.66 \text{ e } \text{\AA}^{-3}$
0 restraints	Absolute structure: Flack (1983), with 736 Friedel pairs
Primary atom site location: structure-invariant direct	Electrony of (14)

methods

Flack parameter: 0.015 (14)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Br1	0.94179 (9)	0.02569 (3)	0.353315 (15)	0.04357 (12)
01	0.7669 (6)	-0.1520 (2)	0.22942 (12)	0.0462 (6)
C1	0.6825 (7)	-0.0344 (3)	0.21549 (14)	0.0288 (5)
C2	0.7424 (7)	0.0837 (3)	0.26609 (14)	0.0302 (6)
H21	0.5345	0.1292	0.2771	0.036*
H22	0.8828	0.1527	0.2426	0.036*
C3	0.5113 (6)	-0.0030 (2)	0.14809 (12)	0.0269 (5)
C4	0.4564 (9)	-0.1109 (3)	0.10021 (14)	0.0361 (6)
H4	0.5303	-0.2014	0.1111	0.043*
C5	0.2955 (9)	-0.0866 (3)	0.03729 (16)	0.0416 (7)
Н5	0.2609	-0.1604	0.0049	0.050*
C6	0.1839 (9)	0.0449 (4)	0.02105 (16)	0.0400 (7)
Н6	0.0712	0.0610	-0.0221	0.048*
C7	0.2374 (8)	0.1525 (3)	0.06797 (14)	0.0355 (7)
H7	0.1621	0.2426	0.0569	0.043*
C8	0.4002 (7)	0.1294 (3)	0.13102 (14)	0.0303 (6)

supplementary materials

H8	0.4366	0.2039	0.1629	0.0	36*	
Atomic displacement parameters $(Å^2)$						
	1711	1/22	1/33	1/12	1/13	1/23
Br1	0 04576 (18)	0 04907 (17)	0.03589(16)	-0.00752(13)	-0.01195 (14)	0.01138(12)
01	0.0662 (17)	0.01907(17)	0.05505(10)	0.00752(15)	-0.0047(13)	0.0036 (8)
C1	0.0309(13)	0.0263(11)	0.0293 (13)	0.0013 (11)	0.0051 (11)	0.0042 (10)
C2	0.0328 (15)	0.0308 (12)	0.0270 (12)	-0.0025(12)	-0.0040(12)	0.0023 (11)
C3	0.0288 (13)	0.0273 (12)	0.0246 (11)	-0.0022 (8)	0.0046 (12)	0.0001 (9)
C4	0.0474 (17)	0.0269 (11)	0.0341 (14)	-0.0029 (13)	0.0083 (15)	-0.0029 (9)
C5	0.052 (2)	0.0408 (15)	0.0325 (15)	-0.0080 (16)	0.0017 (16)	-0.0121 (13)
C6	0.0385 (16)	0.0567 (19)	0.0247 (13)	-0.0042 (14)	-0.0012 (13)	0.0008 (12)
C7	0.0393 (18)	0.0386 (14)	0.0286 (14)	0.0046 (13)	0.0011 (14)	0.0028 (11)
C8	0.0360 (16)	0.0288 (12)	0.0262 (13)	-0.0008 (11)	0.0026 (12)	-0.0005 (9)
Geometric para	meters (Å, °)					
Br1—C2		1.922 (3)	C4—H4		0.950	0
01—C1		1.219 (3)	C5—C6		1.388 (5)	
C1—C3		1.485 (4)	С5—Н5		0.950	0
C1—C2		1.508 (4)	C6—C7		1.382	(4)
C2—H21		0.9900	С6—Н6		0.950	0
C2—H22		0.9900	С7—С8		1.383	(4)
C3—C4		1.397 (3)	С7—Н7		0.950	0
С3—С8		1.399 (3)	С8—Н8		0.950	0
C4—C5		1.379 (4)				
O1—C1—C3		120.8 (2)	C3—C4	—H4	119.8	
O1—C1—C2		121.6 (3)	C4—C5	—C6	120.4	(3)
C3—C1—C2		117.6 (2)	C4—C5	—Н5	119.8	
C1—C2—Br1		112.88 (19)	C6—C5	—H5	119.8	
C1—C2—H21		109.0	С7—С6	—C5	119.7	(3)
Br1-C2-H21		109.0	С7—С6	—Н6	120.1	
C1—C2—H22		109.0	C5—C6	—Н6	120.1	
Br1—C2—H22		109.0	C6—C7	—C8	120.3	(3)
H21—C2—H22		107.8	C6—C7	—H7	119.8	
C4—C3—C8		118.8 (2)	C8—C7	—H7	119.8	
C4—C3—C1		118.4 (2)	С7—С8	—C3	120.4	(2)
C8—C3—C1		122.8 (2)	С7—С8	—H8	119.8	
C5—C4—C3		120.4 (3)	C3—C8	—H8	119.8	
С5—С4—Н4		119.8				
01—C1—C2—E	Br1	-2.6 (4)	C1—C3	C4C5	179.4	(3)
С3—С1—С2—В	br1	176.40 (19)	C3—C4	—C5—C6	-0.5	(5)
01—C1—C3—C	24	-1.6 (4)	C4—C5	—C6—C7	0.7 (5	5)
C2-C1-C3-C	4	179.4 (3)	C5—C6	—C7—C8	-0.3	(5)
01—C1—C3—C	28	177.7 (3)	C6—C7		-0.2	(4)
C2-C1-C3-C	28	-1.3 (4)	C4—C3	C7	0.3 (4	·)
C8—C3—C4—C	25	0.0 (4)	C1—C3	—C8—C7	-179	0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\dots}\!A$
C2—H21···O1 ⁱ	0.99	2.46	3.317 (4)	145
C2—H22···O1 ⁱⁱ	0.99	2.44	3.268 (4)	141
C8—H8···O1 ⁱ	0.95	2.60	3.442 (3)	148
~				

Symmetry codes: (i) -x+1, y+1/2, -z+1/2; (ii) -x+2, y+1/2, -z+1/2.

Fig. 1

Fig. 2

